When other separation techniques fail: compound-specific carbon isotope ratio analysis of sulfonamide containing pharmaceuticals by high-temperature-liquid chromatography-isotope ratio mass spectrometry.

نویسندگان

  • Dorothea M Kujawinski
  • Lijun Zhang
  • Torsten C Schmidt
  • Maik A Jochmann
چکیده

Compound-specific isotope analysis (CISA) of nonvolatile analytes has been enabled by the introduction of the first commercial interface to hyphenate liquid chromatography with an isotope ratio mass spectrometer (LC-IRMS) in 2004, yet carbon isotope analysis of unpolar and moderately polar compounds is still a challenging task since only water as the eluent and no organic modifiers can be used to drive the separation in LC. The only way to increase the elution strength of aqueous eluents in reversed phase LC is the application of high temperatures to the mobile and stationary phases (HT-LC-IRMS). In this context we present the first method to determine carbon isotope ratios of pharmaceuticals that cannot be separated by already existing separation techniques for LC-IRMS, such as reversed phase chromatography at normal temperatures, ion-chromatography, and mixed mode chomatography. The pharmaceutical group of sulfonamides, which is generally mixed with trimethoprim in pharmaceutical products, has been chosen as probe compounds. Substance amounts as low as 0.3 μg are sufficient to perform a precise analysis. The successful applicability and reproducibility of this method is shown by the analysis of real pharmaceutical samples. The method provides the first tool to study the pharmaceutical authenticity as well as degradation and mobility of such substances in the environment by using the stable isotopic signature of these compounds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isotope ratio measurements: new developments and applications.

After 2004 and 2008 (Vols. 378/2 and 390/2) this is the third issue of Analytical and Bioanalytical Chemistry to contain papers on new developments and applications in isotope ratio measurements. Whereas Klaus Heumann was guest editor for the two previous special issues, in this issue Torsten Schmidt joins him as guest editor for the first time. His involvement with this collection of papers st...

متن کامل

A versatile method for simultaneous stable carbon isotope analysis of DNA and RNA nucleotides by liquid chromatography/isotope ratio mass spectrometry.

RATIONALE Liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) is currently the most accurate and precise technique for the measurement of compound-specific stable carbon isotope ratios ((13)C/(12)C) in biological metabolites, at their natural abundance. However, until now this technique could not be applied for the analysis of nucleic acids, the building blocks of the carriers of ge...

متن کامل

Gas chromatography/isotope ratio mass spectrometry of recalcitrant target compounds: performance of different combustion reactors and strategies for standardization.

RATIONALE Compound-specific isotope analysis (CSIA) relies on continuous flow combustion of organic substances to CO(2) and N(2) in a miniature reactor to measure (13)C/(12)C and (15)N/(14) N stable isotope ratios. Accurate analysis is well established for many volatile hydrocarbons. In contrast, compounds which contain hetero and halogen atoms are less volatile and may be more recalcitrant to ...

متن کامل

Continuous-flow isotope ratio mass spectrometry method for carbon and hydrogen isotope measurements on atmospheric methane

We describe a continuous-flow isotope ratio mass spectrometry (CF-IRMS) technique for high-precision δD and δ13C measurements of atmospheric methane on 40 mL air samples. CH4 is separated from other air components by utilizing purely physical processes based on temperature, time and mechanical valve switching. Chemical agents are avoided. Trace amounts of interfering compounds can be separated ...

متن کامل

Liquid chromatography/mass spectrometry stable isotope analysis of dissolved organic carbon in stream and soil waters.

A commercial interface coupling liquid chromatography (LC) to a continuous-flow isotope ratio mass spectrometry (CF-IRMS) instrument was used to determine the δ(13) C of dissolved organic carbon (DOC) in natural waters. Stream and soil waters from a farmland plot in a hedgerow landscape were studied. Based on wet chemical oxidation of dissolved organics the LC/IRMS interface allows the on-line ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical chemistry

دوره 84 18  شماره 

صفحات  -

تاریخ انتشار 2012